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05PC602 POWER SYSTEM ANALYSIS

Unit-I : Modelling of Power Systems Components

Representation of power system components : Single phase solution of balanced three phase networks - One line diagram
- Impedance or reactance diagram - Per unit system - Per unit impedance diagram - Complex power - representation
of loads.

Review of symmetrical components - Transformation of voltage, current and impedance (conventional and power
invariant transformations) - Phase shift in star- delta transformers - Sequence impedance of transmission lines -
Sequence impedance and sequence network of power system components (synchronous

machines, loads and transformer banks) - Construction of sequence networks of a power system.

Unit-I1 : Bus Impedance and Admittance Matrices

Development of network matrix from graph theory - Primitive impedance and admittance matrices - Bus admittance and
bus impedance matrices — Properties - Formation of bus admittance matrix by inspection and analytical methods. Bus
impedance matrix: Properties - Formation using building algorithm - addition of branch, link - removal of link, radial
line - Parameter changes.

Unit=111 : Power Flow Analysis

Sparsity - Different methods of storing sparse matrices - Triangular factorization of a sparse matrix and solution using the
factors - Optimal ordering - Three typical schemes for optimal ordering - Implementation of the second method of
Tinney and Walker. Power flow analysis - Bus classification - Development of power flow model - Power flow
problem - Solution using Gauss Seidel method and Newton Raphson method - Application of sparsity based
programming in Newton Raphson method - Fast decoupled load flow- comparison of the methods.

Unit—1V : Fault Analysis

Short circuit of a synchronous machine on no load and on load - Algorithm for symmetrical short circuit studies -
Unsymmetrical fault analysis - Single line to ground fault, line to line fault, double line to ground fault ( with and
without fault impedances ) using sequence bus impedance matrices - Phase shift due to star- delta transformers -
Current limiting reactors - Fault computations for selection of circuit breakers.

Unit-V : Short Circuit Study Based on Bus Admittance Matrix

Phase and sequence admittance matrix representation for three phase, single line to ground, line to line and
double line to ground faults (through fault impedances) - Computation of currents and voltages under faulted condition
using phase and sequence fault admittance models - Sparsity based short circuit studies using factors of bus admittance
matrix.

Text Books
1) Nagrath, I.J., Kothari. D.P., “Power System Engineering”, TMH, New Delhi; 2007.
2) Wadhwa, C.L., “Electric Power Systems”, Wiley Eastern, 2007.

Reference Books

1) Pai, M.A., “Computer Techniques in Power System Analysis”, TMH, 2007.

2) Stagg and El-Abiad, “Computer Methods in Power System Analysis”, McGraw Hill International, Student Edition,
1968.

3) Stevenson, W.D., “Element of Power System Analysis”, McGraw Hill, 1975.

4) Ashfaq Husain, “Electrical Power Systems”, CBS Publishers & Distributors, 1992.

5) Haadi Saadat, “Power System Analysis”, Tata McGraw Hill Edition, 2002.

6) Gupta, B.R., “Power System Analysis and Design, Third Edition”, A.H. Wheeler and Co Ltd., New Delhi, 1998.
7) Singh, L.P., “Advanced Power System Analysis and Dynamics, Fourth Edition, New Age International (P)
Limited, Publishers, New Delhi, 2006.
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Functions of power system analysis

To monitor the voltage at various buses, real and reactive power flow between buses.
To design the circuit breakers.

To plan future expansion of the existing system

To analyze the system under different fault conditions

e To study the ability of the system for small and large disturbances (Stability studies)

COMPONENTS OF A POWER SYSTEM
1. Alternator

2. Power transformer

3. Transmission lines

4. Substation transformer

5. Distribution transformer

6. Loads

SINGLE LINE DIAGRAM

A single line diagram is diagrammatic representation of power system in which the components are represented
by their symbols and interconnection between them are shown by a straight line(even-though the system is
three phase system).The ratings and the impedance of the components are also marked on the single line
diagram.
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Purpose of using single line diagram
The purpose of the single line diagram is to supply in concise form of the significant information about the
system.

Per unit value.
The per unit value of any quantity is defined as the ratio of the actual value of the any quantity to the base value
of the same quantity as a decimal.

Per unit=Actual value / Base value

The components or various sections of power system may operate at different voltage and power levels. It will
be convenient for analysis of power system if the voltage, power, current and impedance rating of components
of power system are expressed with reference to a common value called base value.

Advantages of per unit system

1. Per unit data representation yields valuable relative magnitude information.

il. Circuit analysis of systems containing transformers of various transformation ratios is greatly
simplified.

1il. The p.u systems are ideal for the computerized analysis and simulation of complex power system
problems.

v. Manufacturers usually specify the impedance values of equivalent in per unit of the equipments
rating. If the any data is not available, it is easier to assume its per unit value than its numerical
value.

V. The ohmic values of impedances are refereed to secondary is different from the value as referee to

primary. However, if base values are selected properly, the p.u impedance is the same on the two
sides of the transformer.

Vi. The circuit laws are valid in p.u systems, and the power and voltages equations are simplified since
the factors of \'3 and 3 are eliminated.

Change the base impedance from one set of base values to another set
Let

Z=Actual impedance, Q

Zp=Base impedance, Q

. . Z 4 ZxMVA
1 1 [=— = =
Per unit impedance of a circuit elemen 7 ) 2 By (1)
MVA

The eqn 1 show that the per unit impedance is directly proportional to base megavoltampere and inversely
proportional to the square of the base voltage.

Using Eqn 1 we can derive an expression to convert the p.u impedance expressed in one base value ( old base)
to another base (new base)

Let kVyp o1a andMV Ay, 014 represents old base values and kVp new and MVA  new represent new base value
Let Z, 014 = p-u. impedance of a circuit element calculated on old base
Zpunew = p-u. impedance of a circuit element calculated on new base

If old base values are used to compute the p.u.impedance of a circuit element, with impedance Z then eqn 1 can
be written as



AD 4 MVAb.a!d

VA ; =
poaold 2
(kvb.a.!d)
Vi)
Z=12,, g Srbed) >
p.aold MV A o ( )

If the new base values are used to compute the p.u. impedance of a circuit element with impedance Z, then eqn
1 can be written as

5 ZXMVAp new
Anew T T, 7]
P |:’f v b new }

(3)
On substituting for Z from eqn 2 in eqn 3 we get

(kVy 14 )2 y MV Ay ew

Z =Z
P new pu.old 2
MVAb'GH (kwb,.l'téw )
_ &V b ald : MVA b new
Zp,u.new - zpu.old A (M’h.uw) . (-"ﬂ"ﬁh.a!a' ) (4}

The eqn 4 is used to convert the p.u.impedance expressed on one base value to another base

MODELLING OF GENERATOR AND SYNCHRONOUS MOTOR
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1M equivalent circuit of generator 1M equivalent circuit of synchronous motor

MODELLING OF TRANSFORMER
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X=X +X, =X+ KE =Equivalentreactance referred to 1°

MODELLING OF TRANSMISSION LINE
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R, (—— 1) =Resistance representing load
5
R = R ; += R, ' =Equivalent resistance referred to stator
X = X , + X , =Equivalentreactance referred to stator

Impedance diagram & approximations made in impedance diagram

The impedance diagram is the equivalent circuit of power system in which the various components of power
system are represented by their approximate or simplified equivalent circuits. The impedance diagram is used
for load flow studies. Approximation: (i) The neutral reactances are neglected. (ii) The shunt branches in
equivalent circuit of transformers are neglected.

Reactance diagram & approximations made in reactance diagram

The reactance diagram is the simplified equivalent circuit of power system in which the various components of
power system are represented by their reactances. The reactance diagram can be obtained from impedance
diagram if all the resistive components are neglected. The reactance diagram is used for fault calculations.

Approximation:

(1) The neutral reactances are neglected.

(1)  The shunt branches in equivalent circuit of transformers are neglected.
(ii1))  The resistances are neglected.

(iv)  All static loads are neglected.

(v) The capacitance of transmission lines are neglected

PROCEDURE TO FORM REACTANCE DIAGRAM FROM SINGLE LINE DIAGRAM
1. Select a base power kVA}, or MVAy,
2. Select a base voltage kVy,
3. The voltage conversion is achieved by means of transformer kVy, on LT section

=kVp on HT section x LT voltage rating / HT voltage rating
4. When specified reactance of a component is in ohms
p.u reactance=Actual reactance/Base reactance

specified reactance of a component is in p.u

X X o (,{' lT'/.’:-,m"ri’ )‘: e M I./'.j'l!i'.h'i'l-i
P Hem i old (k'{/r . )._ MV::IJM?M




EXAMPLE

1. The single line diagram of an unloaded power system is shown in Fig 1.The generator transformer
ratings are as follows.

G1=20 MVA, 11 kV, X’=25%

G2=30 MVA, 18 kV, X’=25%

G3=30 MVA, 20 kV, X’=21%

T1=25 MVA, 220/13.8 kV (A/Y), X=15%

T2=3 single phase units each rated 10 MVA, 127/18 kV(Y/A), X=15%
T3=15 MVA, 220/20 kV(Y/A), X=15%

Draw the reactance diagram using a base of 50 MVA and 11 kV on the generatorl.
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SOLUTION

Base megavoltampere, MVAb,new=50 MVA

Base kilovolt kVb,new=11 kV ( generator side)
Reactance of Generator G
kVioia=11kV kVnew=11kV
MVAy, 51a= 20 MVA MVAp pery =50 MVA

.X},_“_om:(). .?j-p. "

MVAp new )

kv
The new p.u. reactance of Generator G=X,, o1q X ( LEL ) X (M‘VAb y
0

kvb.new

11\? _ /50
= — —_ =7 2
‘ 0.25 x (“) X (20) 70.625p.u
side)
Reactance of Transformer T1
’:'Vb,o!d:ff kv A'Vb,new:]] kV
MVAy 014~ 25 MVA MV Ay =50 MVA

Xpuoia=0.15p.u

2
kv MVA
The new p.u. reactance of Transformer T1=X,, yia % [ —22%) x bnew
pu.0 KV b new MVAp ola

=015 x (1) x () =70.3 pu



Reactance of Transmission Line

It is connected to the HT side of the Transformer T1

HT voltage rating

Base kV on HT side of transformer T']1 =Base kV on LT side X

=11><%= 220 kV

LT voltage rating

Actual Impedance X geniai= 1000hm

2
_(kvb,new) — 220°

Base impedance X pus, = 968 ohm
MVA} now 50
A , Actual Reactance ,ohm 100 .
p.u reactance of 100 Q transmission line= =—=j0.103 p.u
Base Reactance ,ohm 968

Actual Reactance ,ohm 150 .
=—=j0.154p.u

p.u reactance of 150 € transmission line=
Base Reactance ,ohm 968

Reactance of Transformer T2

ka,oldzfA?? * ""3 kV  =220kV A'Vb,new:i?n?o kv
MVAyo1q= 10 * 3=30 MVA MV Ap pers=50 MVA
Xoi01a=0.15p.u

2
kv MVA
The new p.u. reactance of Transformer T2=X,,, o1a X [ —22%) x bacw
pu.0 KV new MVAp old

~0.15 x (%)2 x (57) =/0.25 pu

Reactance of Generator G2

1t is connected to the LT side of the Transformer T2

LT voltage rating
HT voltage rating

Base kV on LT side of transformer T'2 =Base kV on HT side %
=220 X — = 18 kV

220
kVoora=18 kV KV pren=18 kV
MVAp, p1a= 30 MVA MVAp, =50 MVA

Xpuo01a=0.25 p.u

2
KV ald MVAp new
W P, 2= —_— —_—
The new p.u. reactance of Generator G 2=Xp, o1a X (ka.new ) X (WM“M )

~0.25 x (%)z % (g) =70.4167 p.u

Reactance of Transformer T3

ka}on=20 A—V karngw=20 J{’V

MVAyo1a= 20 MVA MVA perw=50 MVA

Xp‘u_o;ar:a ]5}). u

2
KV o1d MVAp new
W p.U. f 3= - .
The new p.u. reactance of Transformer T3=Xp, o1q % (ka.new X\ T

=0.15 x (%)2 x (22) =j0.25 pu



Reactance of Generator G3

It is connected to the LT side of the Transformer T3

LT voltage rating

Base kV on LT side of transformer T3 =Base kV on HT side X
— 20 _
=220 x 50 20 kV

HT voltage rating

kVb,01a=20 kV Vo new=20 kV
MVAy, 1= 30 MVA MVAy, oy =50 MVA
Xpouo01a=0.21 p.ut

2

—_ kV b old MVA b new

The new p.u. reac > nerator G 3= X |—) X |{———
he new p.u. reactance of Generator G 3=Xp, o1d (wblnm Ay o1g

~0.21 x (%)2 X (z—g) =j0.35 p.u
Example

2) Draw the reactance diagram for the power system shown in fig .Use a base of50 MVA , 230 kV in 30 Q
line. The ratings of the generator, motor and transformers are

Generator = 20 MVA, 20 kV, X=20%
Motor =35 MVA, 13.2 kV, X=25%
T1=25MVA, 18/230 kV (Y/Y), X=10%
T2 =45 MVA, 230/13.8 kV (Y/A), X=15%

™ T2
G
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%

Solution
Base megavoltampere, MVAb,new=50 MVA

Base kilovolt kVb,new=230 kV ( Transmission line side)

FORMULA

2
kVp o1d MVAp new
The new p.u. reactance X =X X|——) X|————
P pu,new pu,old KV new MVAp o1

Reactance of Generator G
It is connected to the LT side of the T1 transformer

Base kV on LT side of transformer T'1 =Base kV on HT side X
=230 X —— = 18 kV
230

LT voltage rating

HT volta ge rating

kVy,01a=20 kV §Vinew=18 kV
MVAjy, 4= 20 MVA MVAj =50 MVA

Xpuola=0.2p.u

2
kv MVA b new
The new p.u. reactance of Generator G=X,, gia X [—2&) x [——2e
pu.o KV b new MVAp o1d

=0.2 x (%)2 x (33) =/0.617 p.u



Reactance of Transformer T1
ka,ofd:18 kv ka,new:.IS kv

MVAy o1a= 25 MVA MV Ay =50 MVA
Xp‘u,a;d=0. Ip.u

2
kv MVA
The new p.u. reactance of Transformer T1=X, o1a % [—=2%) x Lnew
i KV b new MVAp,ola

=0.1 x (E)z X (z—g) =i0.2 p.u

Reactance of Transmission Line

It is connected to the HT side of the Transformer T1

Actual Impedance X qenai= j30 ohm

2
=(kvb,naw ) — 230°
MVAp new 50

Base impedance X pqs, = 1058 ohm

Actual Reactance ,0hm

p-u reactance of j30 Q transmission line= =43 - j0.028 p.u

Base Reactance ,ohm 1058
Reactance of Transformer T2
kVb01a=230 kV Vo new=230 KV
MVAp,pia= 45 MVA MVAp =50 MVA

Xp‘u_a;d=0. ]_‘)-p. H

2
kV'p o1d MVAp new
The new p.u. reactance of Transformer T2= X ( - X '
p f f pu,o!a’ kvb‘new MVA b.old

=0.15 x (%)2 x (%) =jo.166 p.u

Reactance of Motor M2

It is connected to the LT side of the Transformer T2

. . LT vol i
Base kV on LT side of transformer T 2 =Base kV on HT side x - totage Tating
HT voltage rating
=230 X =2 = 13.8 kV
230

kVoa=13.2 kV IV pnew=13.8 kV
MV Ay o1a= 35 MVA MV A ey =50 MVA

Xpota=0.25 p.ut

2
kv MVA
The new p.u. reactance of Generator G 2=X,, ya X | —=2%] x | ——2
pu.o KV new MVAY ola

=0.25 x (g)z x (3) =/0.326 p.u





















Symmetrical Components

An unbalanced system of N related vectors can be resolved into N systems of balanced vectors. The N —
sets of balanced vectors are called symmetrical components. Each set consists of N — vectors which are
equal in length and having equal phase angles between adjacent vectors.

Sequence Impedance and Sequence Network

The sequence impedances are impedances offered by the devices or components for the like sequence
component of the current .The single phase equivalent circuit of a power system consisting of impedances
to the current of any one sequence only is called sequence network.

Positive Sequence Components

The positive sequence components are equal in magnitude and displayed from each other by 1200 with the
same sequence as the original phases. The positive sequence currents and voltages follow the same cycle
order of the original source. In the case of typical counter clockwise rotation electrical system, the positive
sequence phasor are shown in Fig . The same case applies for the positive current phasors. This sequence is
also called the “abc” sequence and usually denoted by the symbol “+” or “1”




Vel Positive Sequence

Components
120°

120°

\"al

Negative Sequence Components

This sequence has components that are also equal in magnitude and displayed from each other by 1200
similar to the positive sequence components. However, it has an opposite phase sequence from the original
system. The negative sequence is identified as the “acb” sequence and usually denoted by the symbol “-” or
“2” [9].The phasors of this sequence are shown in Fig where the phasors rotate anti- clockwise. This
sequence occurs only in case of an unsymmetrical fault in addition to the positive sequence components,

Vb2  Negative Sequence
Components

120°
120°

\"’1"

do

Zero Sequence Components

In this sequence, its components consist of three phasors which are equal in magnitude as before but with a
zero displacement. The phasor components are in phase with each other. This is illustrated in Fig . Under an
asymmetrical fault condition, this sequence symbolizes the residual electricity in the system in terms of
voltages and currents where a ground or a fourth wire exists. It happens when ground currents return to the
power system through any grounding point in the electrical system. In this type of faults, the positive and
the negative components are also present. This sequence is known by the symbol “0” .

Zero Sequence
Components

AN

al












EXAMPLE

1. The symmetrical components of a phase —a voltage in a 3-phase unbalanced system are
V., =10180°V, V,; =5020°Vand V,, =20,90°V.

Determine the phase voltages Va ,Vb and Vc

The phase voltages of V,,V,and V.

v:'t 1 1 1 Vn 0
Vil=11 a* al|Va
V. 1 a a’llV

Vo = Vao + Vo +Vaz
Vb = Vﬂﬂ + a.?'Vﬂ] + ﬂ.Vnz
L‘:: — Vﬂ0+ﬂ.Vﬂ1 +ﬂ21”"2

V,=102180° =—10+j0 V

Vy=5020°=50+,0

V,p =20290° =0+ 520 |,
a=12120° a?=1,240°

a?V,, = 12240° X 5020° = 5022400 = —25 — j43.30
aV,, = 12120° x 5020° = 502120° = —25 + j43.30
a?V,, = 12240° x 20290° = 20,233 = 17.32 — {10

aVv,, = 12120° x 20290° = 202210° = —17.32 — {10
V, = Voo + Vo + Voy = (=10 + jO) + (50 + jO) + (0 + j20) = 40 + j20 = 44.72227° V

V, = Voo + a2V, +aV,, = (—10 + j0) + (—25 — j43.30) + (—17.32 — j10) = —52.32 — j53.90
= 74,692—134°V

V. = Voo + aVyy + a?V,, = (—25 — j43.30) + (—25 + j43.30)+ 17.32 — j10 =-17.68+33.3

=37.70 2—118°V

THREE-SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

Positive sequence currents give rise to only positive sequence voltages, the negative sequence currents give
rise to only negative sequence voltages and zero sequence currents give rise to only zero sequence voltages,
hence each network can be regarded as flowing within in its own network through impedances of its own
sequence only.

In any part of the circuit, the voltage drop caused by current of a certain sequence depends on the
impedance of that part of the circuit to current of that sequence.

The impedance of any section of a balanced network to current of one sequence may be different from
impedance to current of another sequence.

The impedance of a circuit when positive sequence currents are flowing is called impedance, When only
negative sequence currents are flowing the impedance is termed as negative sequence impedance. With
only zero sequence currents flowing the impedance is termed as zero sequence impedance.

The analysis of unsymmetrical faults in power systems is carried out by finding the symmetrical
components of the unbalanced currents.



Since each sequence current causes a voltage drop of that sequence only, each sequence current can be
considered to flow in an independent network composed of impedances to current of that sequence only.

The single phase equivalent circuit composed of the impedances to current of any one sequence only is

called the sequence network of that particular sequence. The sequence networks contain the generated emfs
and impedances of like sequence. Therefore for every power system we can form three- sequence network
s. These sequence networks, carrying current Ial, a2 and [a0 are then inter-connected to represent the
different fault conditions.

SEQUENCE NETWORKS OF SYNCHRONOUS MACHINES

An unloaded synchronous machine having its neutral earthed through impedance, Zn, is shown in fig.
below. A fault at its terminals causes currents Ia, Ib and Ic to flow in the lines. If fault involves earth, a
current In flows into the neutral from the earth. This current flows through the

neutral impedance Zn. Thus depending on the type of fault, one or more of the line currents may be zero.
Thus depending on the type of fault, one or more of the line currents may be zero.
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POSITIVE SEQUENCE NETWORK

The generated voltages of a synchronous machine are of positive sequence only since the windings of a
synchronous machine are symmetrical.

The positive sequence network consists of an emf equal to no load terminal voltages and is in series with
the positive sequence impedance Z1 of the machine. Fig.2 (b) and fig.2(c) shows the paths for positive
sequence currents and positive sequence network respectively on a single phase basis in the synchronous
machine.

The neutral impedance Zn does not appear in the circuit because the phasor sum of la;, Ib; and i is zero
and no positive sequence current can flow through Zn. Since its a balanced circuit, the positive sequence N
The reference bus for the positive sequence network is the neutral of the generator. The positive sequence
impedance Z; consists of winding resistance and direct axis reactance. The reactance is the sub-transient
reactance Xd or transient reactance X’d or synchronous reactance Xd depending on whether sub-transient,
transient or steady state conditions are being studied. From fig.2 (b),

the positive sequence voltage of terminal a with respect to the reference bus is given by:

Va1= Ea - leal
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NEGATIVE SEQUENCE NETWORK

A synchronous machine does not generate any negative sequence voltage. The flow of negative sequence
currents in the stator windings creates an mmf which rotates at synchronous speed in a direction opposite to
the direction of rotor, i.e., at twice the synchronous speed with respect to rotor.

Thus the negative sequence mmf alternates past the direct and quadrature axis and sets up a varying
armature reaction effect. Thus, the negative sequence reactance is taken as the average of direct axis and
quadrature axis sub-transient reactance, i.e.,

X, =0.5(X7d +X"q).

It not necessary to consider any time variation of X2 during transient conditions because there is no normal
constant armature reaction to be effected. For more accurate calculations, the negative sequence resistance
should be considered to account for power dissipated in the rotor poles or damper winding by double
supply frequency induced currents. The fig.below shows the negative sequence currents paths and the
negative sequence network respectively on a single phase basis of a synchronous machine. The reference
bus for the negative sequence network is the neutral of the machine.

Thus, the negative sequence voltage of terminal a with respect to the reference bus is given by:

Va2= —ZzIaz

. Reference bus

Y
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ZERO SEQUENCE NETWORK

No zero sequence voltage is induced in a synchronous machine. The flow of zero sequence currents in the
stator windings produces three mmf which are in time phase. If each phase winding produced a sinusoidal
space mmf, then with the rotor removed, the flux at a point on the axis of the stator due to zero sequence
current would be zero at every instant.

When the flux in the air gap or the leakage flux around slots or end connections is considered, no point in
these regions is equidistant from all the three —phase windings of the stator.

The mmf produced by a phase winding departs from a sine wave, by amounts which depend upon the
arrangement of the winding.

A
z,

B
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X, 2%, 0 0 Tq
a1 =7 0 - Xy — Xm 0 Iar
: b g |
clude that for a transmission line
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3.10 Sequence Network of Transformer

usual representation by leakage impedances.
Zy =2y = Z\cakage

As we know that the neutral current is composed of zero sequénce component ¢
for the zero sequence current to flow from the primary to secondary, definitely a pa
should exist from the primary neutral to the secondary neutral. Hence the zero |
impedance offered by the transformer depends upon how the neutral of the primary and
secondary winding are connected. The zero sequence networks of 3-¢ transformers for
various possible connections in primary and secondary are tabulated in the form of a tabje
as shown. :
From the figures, we can say that only when a definite neutral connection exists on both
the primary and secondary windings, zero sequence impedance will come into picture,
Otherwise the value of zero sequence impedance offered by the transformer is infinity.

Zero Sequence Equivalent Circuits of Three-Phase Transformers

SYMBOLS CONNECTION DIAGRAMS ZERO SEQUENCE EQUIVALENT CIRCUITS
r -
| d P s Q

=1

;1’ hd

. Reference bus
P Zo Q
— e S —————»

g

-._;E( \‘3_— Reference bus
'
l \ t
et l
| Reference bus
P 4 P Zo Q
} — OO0 —— —
P_§ g_Q

——n ——
s . e e e i —

Reference bus

P Zo Q

Reference bus
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| .52 3 > _2_5_ = j0.69
p.u reactance of motor 2 = J0.25 x \ 17 7.5 i
' Al

Positive sequence network

Base imped ~ 112 I .
Pedance — S5 = 4=34th |
-u. reacta - J2.5
P tance e v _;51.55 =
A 32, = F1:5495 5

sequence network is drawn as follows.
g jo.o805  jo.4935

jo.o6

j1.5495
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32| ORIENTED GRAPHS

In the electric transmission network, we are concerned with the interconnectiﬁn
of transmission lines, transformers and shunt reactors/capacitors that can be

. components called  clemep, i

inal passive ion are called by
in terms of (wo term rconnection i A
:;:::a::gd in Chapter 2. The ﬂﬂl?,‘l ﬂ";:;t:in which the passive elgmg,‘“:‘h’: ol
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U pri — e (2) ] [ ——
:
e (b)

ﬂ:ﬂ-l'. Associated reference divection,

()= =’ = (2) (1)s - —a(2)
y

{a) {s)]
’Fiﬂ:‘_ﬂﬁlsl Current source and its oriented graph.

If the element i8 a voltage source, the orientation in the graph is chosen so
that the arrow in the graph goes from the positive to the negative terminal of
the voltage reference. The current, unlike in conventional circuit analysis,
goes from + to — terminal (Fig, 3.4). Thus, while for the passive element the
orientation of the graph is consistent with associated reference directions of
circuit theory, for the current and voltage source it is not. If the element is
purely passive, then Figs. 3.5 (a) and (b) describe the convention with v = zi
or = yv,

j
(e

+

=(2) (1 - @)

=D

(a) (b)
m Voltage source and its oriented graph.

Zory

My e (e @
¥ 1 i
(a) (®) |
Generalized circuit element and its oriented graph.

@3 PRIMITIVE IMPEDANCE AND ADMITTANCE
MATRICES P

‘onsider a network of interconnected components. The passive components
1ay be mutually coupled. The primitive impedance and admittance represen-
itions are v = z{ where v and { are vectors, z is the impedance matrix with y
i the inverse of z. The diagonal elements of z are self-impedances and the
[f-diagonal elements are mutual impedances. If the i and j elements are
utually coupled, then the nqgu‘npi?nflinz Qﬂ}) and (j~{) elements are nonzero.

1]  Consider a four terminal network (e.g. three phases of a
merator which are mutually coupled) shown in Fig. 3.6 with all unequal
utual impedances. For the passive network, the terminal relations are:




i
Vi | a2 a (3‘]’
vy | = z“ 13 a1 2
, 2y 2 I
Vy 1] {3.2)

(1
(2)
(3)
© = (0) =— = ' 3@
(b)
_ f:ae)ni ;i:;m—phm: network ﬂﬂﬂ*ﬁ’ﬂw W |

- Supposc an identical voltage source ¢ is intr "thn.ﬂud: ()]
nnd the common terminal with the polarity show 6(a). it i
equivalent to moving the voliage source in series v
ig. 3.6(b)]. The graph will remain the same w
resenting the Thevenin source. Tha tarmjm

- = - T

34| SYSTEM GRAPH FOR TRANSMISSION
NETWORK

A power system is generally analyzed on a
per-phase basis with balanced three-phase
loads. Hence, only the positive sequence
network 1s considered. The impedances in )
the per-phase equivalent are known as the
positive sequence impedances. The calcu-
lation of these positive sequence impedances :
for a transmission line (both series impedance

and shunt admittance) can be f.mmcllJ in the  WFIBRBTY G’“P"q"' e
standard texts as a first course in power

system analysis. Topologically the positive sequence network M

the original single-line diagram of the network. Conslder the p’l¥h of a
certain passive network shown in Fig. 3.7.

The primitive impedance v-i relationship :lsl_gwﬂéfdjbﬂ rgsh 60 38 2 ‘

Foowi o sl s cde s

(4)
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The primitive admittance i—v relationship is i = yv where y = 7'

—

220 0 2eBun
0. Z5 L 0% 00
0

y=|(0 0 'z; 0 G.7)
0 0 0 z;{ 0
0 0.400. 20T

T35] RELEVANT CONCEPTS IN GRAPH THEORY

Graph theory is a vast mathematical discipline with applications in various
engineering fields. We need only a few basic concepts for our work in power

systems. .
A graph consisting of finite edges and nodes is called a finite graph, It is

said to be connected if there exists a path between any two nodes of the
graph, A subset of edges of the graph is called a subgraph. Certain degenerate

-”"‘ELL/ by itsell arc al 3
, node by 1% are algg Cong,
b jrsell OF & 5 “mio 3.7 are shown o i
subsets such as an ;df:ph: for the graph 1 Fig N in plgﬁr
subgraphs. A few SUbDE @ ;
(If) . /
1
s (. S0 3
(1 5
5
(3
() . (3) :'
(@) (b) (c)

s of the graph in Fig. 3.7.

_ Some subgraph

incident at a node gives ﬂ?e degree of the
mﬁ?ﬁ::ﬁ;:ﬂffm@) is 3. A subgraph with two endpoints ?dt
are‘thc nodes) and all other nodes of degree two 1n the subgraph is ¢
path. A path can traverse an edge at most Once. For example, for Fig_ 37,
subgraphs shown in Fig. 3.9 form the paths between nodes. (1') and (4)
direction of the path that is arbitrarily drawn for egch .path is lDdEpendm'
the orientation of its edges. In some paths, it may coincide with the Orientag,
of some edges and in some it may be opposite to some of the edges.



finally goes back towards the same node along the elements of the loop. For
the graph in Fig. 3.7 two of the loops are shown in Figs 3.11(a) and (b) along
with their orientation. Fig. 3.11(c) is not a loop since the degree of node (2)
in that subgraph is three.

(2)
/l,—‘LE\ m-w
1) & » - > B
(1) < ® 5 (4) -
(5)

(1) 1 (3) 2
2 1 4
: ) T (4)
(5) 7
(5)

ﬂ Loops for the graph in Fig. 3.1(c).

(2)
1
(1 3 (4) m |
2 W
(3 (3) .
(a) . ) G = o SR wedl
- Ilustration of loops and subgraphs that are not loops.
- v : “* . T osaSudN



3.5.2 Tree and Co-tree

One of the important concepts in a linear graph is that of a free. A tree is a
subgraph that is connected, contains all nodes and has no loops. For example
in Fig. 3.1(c), a tree can be formed by the elements (255165 P02, 35 4. 9).
A few trees for Fig. 3.7 are shown in Fig. 3.12. In a tree, there is exactly one
path between any two nodes. If the number of nodes in a graph is n, there are
exactly (n — 1) edges in a tree. The proof of this observation is obvious. The

elements of the tree are called free branches.

@ ® @)
Y3 Y3
m\\ /A) ) @ /)
2 5 5 ‘ 5
@) & @
(a) (b) (©

Trees for the graph in Fig. 3.7.

o tree form a co-Iree and thy
: « the term links K

oy v, We Use : .

adges of the co-tree are called {inks O rhﬂintfh.-cc irees chosen in Fig, 3 y9
cach chosen tree, there Is a ¢o=Iree: Eo Ill]&‘.' (3, A co-tree does not jy
the corresponding co-trees are shown 1N I:Il-lul-cld in Figs 3.13(a) and (b), A
general contain all nodes of the graph a8 ':I.:;qcvurul subgraphs [Fig. 3.13(¢))
I W i ; 2 .

co-tree may be connected or it mity consis ¢ and the corresponding

. , tre
Figure 3,14 shows another example '.ﬂ i gﬂlp:‘ is e, then the number of links
co-tree, If the total number of edges in d graph 28 T

o nol in
hose edges of the graph that are !

(me-(n=Dme-n+1

(2)
@) ) Oy
LN e
: 4 \ 3 a (1) *\{:
(M (4) (1) \ ]
2 2
(3) @
(@) (b) )
m Co-trees of the trees in Fig. 3.12.
.1 (1) (n T- (4) (1) (4)
!
5 4 2 vd 5 2
3 3
- i 2 3
@ (3) (2) 5 (3) (2) (3)
(0) (5) (5)
(a) (b) (©)
- (a) a graph (b) a tree (c) the corresponding co-tree

3.5.3 Fundamental Loop

/A fundamental loop for a graph is formed from the tree of the graph by
inserting an appropriate link. For each link inserted, we create a new
fundamental loop in the tree. There will be in all (e - n + 1) fundamental
h_:mps for a chosen tree, all of these being linearly indcpeﬁdém These are
linearly independent because each fundamental loop contains a m;w link. For
the graph of Fig. 3.1(c) repeated in Fig. 3.15(a), let the chosen tree be (-l 4
8, 9) as shown in Fig. 3.15(b) (solid lines). af



By inserting the links 2, 3, 5, 6, 7 (dotted lines) one at a time, the following

e-n+1=9-5+1=25 fundamental loops are generated. (The links are
underlined.)

(1,2,4,9,8),3,4,98), (59, 4), 6 8), 9,7

1 1-_'.| i' 1r '-E:' ..2. -
F N
WM Fal T =0 OG5 a8
|t ™ TN G Ve
0 l B i) L= "¢
(5 {5)
(i} i)

r“ﬂ- 3:15  Graph. tree (solid) and the links (dotted).

3.5.4 Kirchhoffs Voltage Law and the Fundamental
Loop Matrix

We now stite an amportant wpological property ol a graph, namely the

Fundamental Loop Martriv through the application of Kirchhoff's voltage

luw (KVL). It states that for any closed path or loop, the algebraic sum of

voltages around the loop is zero. We write KVL systematically for the
fundamental loops as follows:
(1) Select u tree,

(i1} For each fundamental loop assign a positive reference direction 1o agree
with the orientition associated with the link for that loop.

(iii) Going around the loop along the reference direction, assign a + Sign to
ithe voltage of the edge il the orientation of the edge agrees with the
reference direction, o — sign il it is opposite, and a zero if the edge 15
not contained 1in that loop,

(iv) Repeat Step (iii) for all the fundamental loops.

(v) Arrunge the voliage vector such that the tree-branch voltages appear
first and the link voltages afterwards,

(vi) The resulting matrix of +1, -1 and 0 entries is called the Fundamental
Loop Mairix.

3.2| Consider the graph of Fig. 3.16(a) and the tree (1, 3, 4)
in Fig. 3.16(b). The fundamental loops obtained by inserting links 2 and 3

2
Ml B o SR IR @
5 a
5 4 ’
(@)

| 4

W o o ' ®

10 - @) I8 O] a @ @

1) et LT @ U () e

V PSS Y fe

4| : . 5 "lu“ i
(4) (@)
(@ (d)

EFIEIEHE (o) graph, (b) tree, (¢) and (d) fundamental loops.
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th KVL in matnx form,

rom Fig. 3.10€), choose the tree (.

pranches anid links e

ns

i 1.9)

2.4, 5) and write

Solution - . ;
The tree is shown in Fig. 3.17 in solid lines and the links in dotted lines.
1 (3 2
) RS T 1
R
I“'H. L ? &
= 3y
!‘. "'u-.__“_ __._.--"";
(5)

— Network with tree branches and links.

The KVL equations can be written by inspection as

W
L) 2 4 8 INS TorBgal v
(<=1 =11 0 1100 0 0l
-1 <11 -110100 0w
0 0 1-1100100|w|=o0 (3.10)
<1 =11 -11000 1 0y
001110000 1)
¥
3.7

Generalization ]
If the preceding procedure iy followed for a general finite graph, then
KVL equations can be written in a form '

1
b

el e=nal "'h
e-n+1|Cy: U | =0
L 4
that is
Cv=0
where

L

Cpisa(e—=n+ 1) x(n- 1) matrix.
Uis a(n - 1) square matrix.

v, is sub-vector of order (n - 1) corresponding to the tree-branch

variables.

v, is a sub-vector of order e — n + 1 corresponding to the link variables.

2ad.

C is called the fundamental loop matrix. .

T

the

(3.11)



The existence of the unity sub-matrix in € is easily verified from the fact
that,
(1) each fundamental loop contains one link only, and
(ii) the positive orientation of the loop coincides with the orientation of the
link for that particular loop.
In general, the entries C are such that,

(i) ¢;; = +1 if the element corresponding to the jth column is in the
fl_ll]ddmt.llld| loop defined by the link in the ith row and their orientations
agree.

(ii) ¢; = —1 if the element corresponding to the jth column is in the
fundamental loop defined by the link in the ith row but their orientations

are opposite.
(iii) ¢, = O if the element corresponding to the jth column is not in the

U

funddmemal loop defined by the link in the ith row.

mp For the transmission network shown in Fig. 3.18(a),
assume lhal the shunt admittances at each bus are lumped into a single
admittance. The oriented system graph is shown in Fig. 3.18(b) with (0)
representing the ground bus. Pick a tree and write the fundamental loop

matrix C.

(1) (2)

(3) (4)

(a)
Transmission, network, graph tree and co-tree

Solution

4, 7, 8), shown b
The following tree is chosen with the tree branchcsd(lzl;-.es The orlentauoni
solid lines. The links are (1, 3, 5, 6, 9) shown by dottcl s. The C matrix jg
for the fundamental loops are shown Wwith dotted line

written as b
Tree branches Links

2 4 7og o IEIREROR
1(—1—1—1111,0000
als 0 sl e ¥, @NEISSUR0 SC (3.12)
Cc=5/0 0 -1 (H=0NIH0E0
slicn o wihi ohlROMOEURREE
50 1 0 -1 10 0.0 O

shud X4

3.5.5 Fundamental Cutset )

Another basic concept in graph theory is that of a cutset. ‘A cutset of a

connected graph is defined as the minimal set ef elements whnse removal
leaves the graph in exactly two parts. Cens1der the graph in Flg 3 19(a).
Removal of elements (3, 4, 5, 6, 7) [Fig. 3319@1 leaves. the graph in three

iy ]



7
10
3 9 @)
8
(6)
4
& (b)
ey (1') @)
§ 10
Y11 9 (7)
6
e —» o 2 (3) 8
(6)
A 2
4
, o
@ 3 o
(d) @)
Graph and cutset concept
parts as shown in Fig, 3.19(¢), Note that
node (5) by itsell constitutes a subgraph. ()¢ ‘L"“"""(z)
snce (3, 4, §, ¢ . y : (3) P a8
Hence b 7) does not form a cutset, e (0)
On the other hand, removal of (4, 6, 7) (4) ot—"7 ’
[Fig. 3.19(d)] leaves it in two parts as shown (6)e (7)
in Fig. 3.19(e). Hence (4, 6, 7) is a cutset. | 5 _ ——
The elements of the cutset can also be
P : gl ' Further illus-
selected by “cutting” the graph with a curved m tration of cutset
(dotted) line not passing through any node of Fig. 21900,

and dividing the graph in two connected

subgraphs. The cutset (4, 6, 7) also divides the nodes of the graph into two
groups, one group consisting of nodes (1), (3), (4), (5) and the other group
consisting of nodes (2), (6) and (7). The edges of the cutset connect the
nodes between the two groups as shown in Fig. 3.20. The reader may verify
the other cutsets in Fig. 3.19(a) as (2, 11, 7), (1, 2, 3, 4), (4, 6, 9, 10), (2, 4,
6, 11), etc. Just as the concept of fundamental loops is associated with a link,
so is the concept of fundamental cutsets associated with a tree branch that
we discuss next.

The tree is a connected subgraph of a given graph. Removal of any tree
branch leaves the tree in two parts, each part having a certain number of
nodes. We thus have two groups of nodes. The edges of the graph connecting
these two groups of nodes are called fundamental cutsets and correspond to
that particular tree branch. The edges of the cutset are the particular tree
branch and other links that connect the two groups of nodes. Thus, for each
treebranch we have an associated fundamental cutset. Altogether, we have
(n — 1) fundamental cutsets in all since a tree in an n node graph hasj{l — B
edges. & = é |



Consider the graph in Fig. 3.21(a). Let the tree branches be (2, 4, 5, 7)
which constitutes a connected graph [Fig. 3.21 (b)]. Removal of tree-branch

2 in the tree divides the nodes into two groups of nodes as shown in
Fig. 3.21(c). We then insert all the possible links of the graph between the

two nodes. This constitutes a fundamental cutset associated with branch 2.
For convenience, the tree-branch 2 is shown in a solid line and the other
links are shown in dotted lines. The fundamental cutsets corresponding to
other tree-branches, that is 4, 5 and 7 are similarly shown in Figs 3.21(d),
(e), and (f), respectively. To avoid this laborious procedure, we can follow
the simple rule of cutting the graph by a curve not crossing any node such
that it cuts only one tree-branch at a time. This is shown in Fig. 3.21(g).
Thus, the fundamental cutsets for the graph in Fig. 3.21(a) and the chosen
tree in Fig. 3.21(b) are (2, 1, 6), (4, 1, 3), (5, 1, 3), and (7, 6) (the tree-

branches are underlined).

{1) ey

{114) % T4 y Ta il 3 '
m’ i il Ll =

_ Network andﬁmdamanmfcumepn i Yo equotg 1
T 4 -d, i
It is of interest to :umark h;r: thnt n spj; pf - :::‘#,;
linearly independent cutsets can also exist wh{clam I~
cmnm be d:tcmuned hy a tree. As an :xnn'ngi' : .’ s | o
consider the graph in Fig. 3.22. The elements = X, -~
incident on each node is @ cutset and the edges
of emﬁl mltn.-. alfo the ones cut by a nqwcﬁ"liﬂe"""
see later, only (n - 1) cutsets in

A iy Eh constitute almnnr'l}F ﬁud&i&n ad) ol 7l
- e dnil siliaea am lis "!HIH !'##

el QP [ ;,J- rlhhll.ll




(2, ). The underlined element corresponds (o the tree branch, If corresponding
to cach fundamental cutset, (he curved dotted line were extended to form a
closed surface, then KCL states that the algebraic sum of the currents leaving
a closed surface is zero. To apply KCL systematically, we define the
orientation of each cutset (o coincide with the orientation of the associated
tree branch. In writing KCL we give a + sign to an edge of the cutset if its
orientation agrees with the orientation of the cutset and a ~ sign if it is
opposite. Application of KCL to each of the three cutsets in Fig. 3.23 gives

fl - f’ = () ‘343‘}

7t hobg | (3.13b)

fz o f4 = () (3.13‘)

Arranging Eqs. (3.13a), (3.13b) and (3.13¢) in matrix form we get o
' Tree branches  Links it A L

1 3 4 2 5 &:: . "1.'

- -

P SNy e,
_ assocmgﬂwmh the

W -
Generalization 0" -
For a general graph we can write the 2

o b
~ilon B, ][::] “0 S R

& F .y
i . uw ? N onta ;:_HL Y

| oy e e e e | P
~ unity matrix U is self-evident. In a % TP
~ more compact form ) < st . TR 3.17)
L TE Blat A g dN S



where (3.18)

B=|U|B,] der of tree branch and link

and i is the vector of currents arranged in the Of It has unity submatrix of
= tset matrix.

currents. 8 is called the ,fumffmn ntal cu frpuheter of order (n — 1) x

order (n — 1) in the leading position and
(¢ —n + 1) in the trailing position. Each row is I
The entries of the matrix B are such that R i otweis
b, = 1, if the orientation of the element correspon Ing g
agrees with the orientation of the tree branch corresp
ith row. _ ‘
b, = —1, if the orientation of the element in the jl!l column ':ShOPP?vS“e to
the orientation of the tree branch corresponding to the ith row. 1
b, = 0. if the orientation corresponding to the jth column does not belong

to the tree branch corresponding to the ith row.

“‘Fm For the graph in Fig. 3.18(b) and the chosen tree (2, 4, 7,
8). wnte the B matrix.

identified with a tree branch.

Graph and fundamental cutsets for the transmission network
of Fig. 3.18.

Solution
The graph is redrawn in Fig.

3.25 with the cury :
fundamental cutsets. The B matri ed lines defining the

X is written by i Inspection as

Tree branches Links
2 4 7 8 I 3 SNy
2(1 0 0 0 [Fg ) et
B=4 01001 -1-=10 01 (3.19)
7100 10 1 1 1 Lisnglnnf)
8\ 0 0f 03 |S e WS IR

3.5.7 Incidence or Vertex Matrix

One of the characterizations of a graph is
the incidence matrix. The edges incident to
a node in a graph is called the incidence
set. Thus a connected graph has as many
incidence sets as there are nodes. We can
write KCL at each of these nodes giving a
+ sign to the currents leaving the node and
a-sign to the currents entering the node.
Alternatively, we can interpret each incidence set as a cutset Wlth
enclosing the node and the positive orientation of the cutset outwards

the dotted closed line (see Fig. 3.26). The KCL equations for nodes (1)-(43

Incidence sets
ina graph.

can be written as R o2
g Sy PRI IR, (3%5‘
—iy =i+ i3=0 (3.20b)
iy + f;‘ =0 s (3.20¢)
—I3—I4+15=0 o (.20d)

In matrix form Eqs (3.20a) to (3 20d) can be wntten asholl = & * 598




i —is=0 (3.20a)

2.0 (3.20b)
G+ 5 =0 (3.20¢)
9. 2R 25, (3.20d)
In matrix form Eqgs (3.20a) to (3.20d) can be written as
Edges
19 Tm e . O
TR T () e
D2 iy agrarig]| 2 ;
Nodes 33/ 9 1 o 1 027
10 07 S A
Aji=0 @21

In general, the order of A, is n X e where n = number of nodes and e =
number of edges in the graph. A, is called the node to branch incidence
matrix or augmented incidence matrix. The entries of A, are such that

- ¥ a - .
MPHM Techniques’ | column is incident to the
th ’ :
ponding o thc-‘f {|ircclcd ﬁwdfv fr-:um it.
¢ corresp? d 18 an is incident tg the

(ay), = +1, if the edg h row ¢ jth colur

1 in
node corresponding ”[;flmiiﬂﬂ 0,4 nd 18 directed towardg the
il o e ¢ cm'l'c-q y rnw H
R 1” oS mnding 10 the th .
noac {.'l.‘ll'r*(‘!i]‘ll iql nﬂl incident tU th
«h column I ¢
node. puudiﬂﬂ (o the jth ¢
T vdue cOrres
(a;), =01l the edge cor
)

' th TOW- . i dent on (WO nodes,
node corresponding to. the ment 18 incid e

o .e each elé ry. If we add y
It may be observed that since €4 — | entry P al|

RIS B S e T . the rows are line
columns of the A, matrix have ::ID row. This mdlCE“;: S o woisay ?Il.'lly
the rows of A, matrix we get a _ { rows at
dependent Tl:c pnumber of linearly indepen elete any one row and tpe

: i ' = i the inci

the rank of the matrix A, 18 (n Jincidence or simply ncidency
resulting matrix A 1s called the reduce

matrix. The order of A4 is (1 — 1) >k is generally the reference

: is present, it A TR
In power networks, if a ground buist 1iss pgcnerally deleted in writing the 4
(0]

;‘-;5“?;: dI; ll;cnr?;fvg?;r;:gztdi:nogn;ection to ground.'one of the nodes is taken
as refe;'ence and then deleted in writing the A matrix.

Xample 3.7| Write the reduced incidence
network in Fig. 3.18. Choose the ground bus (0) a

matrix for the transmission
s reference bus.

Solution _
By inspection, the matrix A 1S written as
Edges
10 50 Bt s SHI6 eS8, O
a1t oS0 =0 00_0\
@ =180 =Tl 0 R0a0 0 1
0 01 0)

@0 0 0 e



3.5.8 Interrelationships between the Matrices A, B, C
and the Network Graph

In A matrix the columns corresponding to the edges were arranged
sequentially. They can be written in any particular order. In fact, one of the
ways is to arrange the columns in the order of tree branches and links for a
given tree in the graph. Thus, we can write A as

Tree branches Links =

Al= Wl 4¢] bitin o1 1, .ri‘-‘.‘:';% il ) v eonly (322
tlustrated for some examples. The proofs éan -
theory. P be found in texts on grlph
Property i r

For o given tree of w graph each row of the fundamental lnop matrix € is

orthogonal 1o each row of the fundamental cutset matrix A, Mathematically
this relationship implics

H‘-"f' i cl]n - “ (3‘!1&’
Since B = [UTR ) and € = [€, 1 U], it follows

i m[%] -0 ﬂ.‘.wl

Therefore, € = ~B, which is the same us

C,= —BI (3.25)
This is a very important result. 1t tells us that for o given tree of a graph, if
the fundamental loop matrix € is known, the fundamental cutset matrix is
also known and vice-versa, This relationship can be verified from Eq. (3.25).

Property 2 ‘
Let the incidence matrix A be arranged in the order of tree branches and
n-1 e-n+l ' :

links for a given tree, ie, A
A=n=10 A, | A ] 3.26)

It can be shown that A, is nonsingular. Furthermore, the fundamental
‘matrix for the given tree is given by ,.,‘1-_ .

BedilA |

2 2



Solution
e gace ATk A

we wri

C
hoﬂuinl:- (:i) as the reference node. ’
Tree branches Pt
Hndnl 344 3 i
A=@| 0 i Bkl e
@1 .1-{ e
: BHTRRT, it
R e e ATIRE y
- oo P
(3.29)
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Flow Chart for Inspection Method

( START )

A
Read line data & bus
data

\ 4

Initialize the Y-bus matrix Y;; =0
for all values of iand j

|
k=1

»
>

A
i = sb(k) &j;eb(k)

Yii =Yi +1/(r; + %) + Yo
Yii =Y + Y (5 + %) + Yok
Yi =VYji ==Y + jX;)

Yes
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UNIT-1I1 SPARSITY TECHNIQUES
INTRODUCTION

e Sparsity is the condition of not having enough of something.

e If a matrix contains less number of non-zero elements, then that matrix is considered as sparse matrix. In
power systems, most of the matrices like Ybus matrix and Jacobian matrix are sparse matrices.

e Sparsity technique is a programming technique is a digital programming technique by which sparse
matrices are stored in a compact form in computer memory.

e Only non-zero elements are stored and calculations are done on non-zero values, thereby not only
reducing the computer memory requirement but also reducing the computation time.

e Most the software programs use sparsity techniques effectively in solving very large problems like
power flow of Indian Power System.

SPARSITY TECHNIQUES

1. Compact Storage Scheme
2. LU Factorization
3. Optimal Ordering

COMPACT STORAGE SCHEME

While storing non-zero elements of sparse matrices in computer memory, a systematic procedure must be
adapted so that the non-zero element can be accessed, altered, included or removed. To handle sparse matrices,
two methods are popularly used.

e Entry-Row-Column Method
e Chained Data-Structure Method

Entry-Row Column Method

e Consider a sparse matrix A=

o w o
o O B
N O O

e The above matrix can be stored in compact form as follows:

STO RN CN

1 1 2
3 2 1
2 3 3

where
STO : Stored Non-Zero Values
RN : Row Number
CN : Column Number

It is very clear from the above example that there are three linear vectors to store non-zero values.
These three vectors contain all the data present in the original [A] matrix.

This is the simplest method but it has some drawbacks.

The main drawback is that data retrieval is not so fast.

This method is not followed in practice.

Chained Data-Structure Method

e Consider a sparse matrix A=

o o b~ -
o O w o
R O O O
O N O -

e The above matrix can be stored in compact form as follows:



STO| |CN|....|N-First
Q->] 1 l | e—1— 1 --> First row starts from array index (1)
2)->| 1 4 3 --> Second row starts from array index (3)
3)-->| 4 1 / , 5 --> Third row starts from array index (5)
@4 -->| 3 2 / y 6 --> Forth row starts from array index (6)
(5)-->| 2 4 C 7
©6)->| 1 3 /
7 -->
®) >

The value-1 in NX vector indicates that there are some more values in the respective row.
If NX=0, there are no more non-zero values in the respective row.

e This method replaces the RN vector by RFirst vector, whose size equals only the number of rows in the
given matrix, which further reduces the memory requirement.
e The numbers in the RFirst arrays indicate the index numbers of STO/CN arrays and represent where the

a row starts in STO/CN arrays.
e This method is widely used in all practical applications.

LU FACTROIZATION OR TRIANGULAR FACTORIZATION

* R b o c{ e snglmi;fg 7&3@? :
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3 1
5 2
3 3
8 4
5 .
5 B
4 7
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B 9
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3 14

PROBLEM:

W A W W W N A O O O B W W

w 0 9~ ¢ ot A W N =

N S S
h W N = O

1 2 3 4 6 7 8 9 10 11 12 13 14
X X | '
x| x| x| x
X | x| x
x [ x[x[x| [x| [x] I
X | x x | x
X | x x| x| x
X X X
X
X X X
x | x| x
X
X
X X
X X | X

Perform Optimal Ordering by Tinney-Walker Method-2 for the
following Matrix, where X represents non-zero elements.

1 2 3 4 5§ 6 7 8 9 10 11 12 13 14
X X | '
x| x| x| x|x
x [ x| x
x| x| x| x| [x| [x]| I
X | x X | x
X | x x [ x| x
X X X
X
X X X X
x | x| x
X | X
X
X X X
X
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PROBLEM: Compute the number of fill-ins in the above problem, if we do LU

factorization without optimal ordering.
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Power system analysis to
oPerating conditions.

of

balanced and the loads ar
network, at each bus,

UNIT-II

Load Flo— Ihidszs -

Load flow or pPower flow- - analysis is a computer aidsd

obtain the soclution under static
This analysis is carried out to determine

1. Bus wvol tages
2. Line flows

3. the effect of change in circuit configuration
4. the effect of loss of generation
S. economic system generation

6. transmission loss minimisation
7. Possible improvement to an exist

- ing system by ¢change
of conductor size and system vol tage.

-

-

For load flow analysis,

a single phase
the Power

] representation
network is used since the system is generally
e represented by constant Powers. In the

there dare four variables

viz.
1. Voltage magnitude 2
2. Voltage phase angle
3. Real power and
4. Reactive power.
i es 1
Bus Specified variables Computed variabl
i ower s
ck bus vol tage magnitude Real and reactive pow
e and its phase angle
and
. i Vol tage phase angle an
Magnitudes of bus =
Gen:::tor vo?tagcs and real reactive pPower
(PV bus) powers and limits
on reactive powers
de and phase angle
and reactive Magnitu 2
tg;db3:§ 2§:érs of bus voltages

at

flow

ified

Out of these four quantities, two of them are izzClioad

each bus and the remaining two are deturmlned fﬁgm SR =5
solution. To supply the real and reactive powel ot

. : > flow
B atlibe (brown Tild the eld of the o titue  Ta
solution, a generator bus, called slack or S :

i its
selected. At this bus, the generator wvoaltage magnltudiosigg e
Phase angle are specified so that the unknown power er;tion A
also assigned to this bus in addition to balance of gen

i e
any. Generally, at 811 other generator buses, voltage maiTltZ:d
and real power are specified. At al} load buses, the‘ re e
reactive load demands are specified. The following 5

iat nd
illustrates the type of buses and the assocliated K nown a
unknown wvariables.
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REPRESENTATION - POWER FLOW VARIABLES

Bus \Woltage....
Z‘Vi‘Zgi = Nl‘ ejé‘i = Nl‘ (COSé‘i + jSin 5i):ei + J fi
Ybus element.....
Yic = Vil £ 6y = Y| €)% =Gy + By,
Bus Current....
n
Ii - ZYU VJ
j=1
Bus Power....

n
Si=R+iQ=Vili =V; YY"V,
i=1
Hybrid Form....

Si=P+jQ ZNV el (G - jBy)

Separating the real and imaginary parts .....

Pi :anwlvj {GU COS(5i —5j)+ B'J Sin(5i —51)}
j=1

Z‘VV {Gu sin(d; — J;) — By cos(5i_5j)}
j=1

Polar Form......

S, =P +jQ ZWV Yo%)

j=1
Separating......

n
Pi =ZMVJ Yij‘COS(é‘i —51 —6’”—)
j=1

QI :ZN'VJ Yij‘Sin(ai —51 —6’ij)

j=1



Rectangular Form......

n
Si =P +JQ =) (e+] fi)(Gj — iBj)ej—i ;)
j=1
Separating......

n

Pi =Zei(Gijej _Bij fj)-i- fl(G” f] + B”ej)
j=1
n

Qi =) fi(Gijej — B f;)—ei(Gy f; + Byej)
j=1

POWER FLOW ANALYSIS

Power flow analysis is the determination of steady state conditions of a power system for a specified power
generation and load demand. It basically involves the solution of a set of non-linear equations for the real and
reactive powers at each bus.

It is used in the planning and design stages as well as during the operational stages of a power system. Certain
applications, especially in the fields of power system optimization and distribution automation, require repeated
fast power flow solutions. Due to a large number of interconnections and continuously increasing demand, the
size and complexity of the present day power systems, have grown tremendously and it becomes very difficult
to obtain power flow solutions, which is ideally suitable for real time applications. The three traditional
methods used for power flow are

Gauss Seidel (GS)
Newton Raphson (NR)
Decoupled NR

FDLF

GS method was one of the most common method in power flow studies. This is the GS expression that may be
solved iteratively for the solution of power flow problem. This method is simple, requires less computer
memory but this method is slow due to poor rate of convergence, number of iterations increases directly with
the system size and choice of slack bus affects the convergence of this algorithm. Because of these drawbacks,
this method is not used for present day power systems.

NR method is very powerful technique in solving power flow problem. This is a gradient technique and needs
the jacobian matrix to be formed during the iterative process. This Jacobian matrix provides the optimal
direction for finding the solution. This method has several advantages. It reliably converges. It is insensitive to
selection of slack bus. No of iterations is independent of system size. It requires less no of iterations. But it is
very inefficient in the sense that it requires large computer memory and takes large computation time. That is
why this algorithm is not suitable for real-time applications.

Simplifications in the jacobian tend to alter the direction, generally increasing the number of iterations. If the
simplifications are done properly, an improvement in overall computational performance may be achieved.
Whatever be the simplifications made, the final solution should remain unchanged.

There is weak coupling between Real power flow and Reactive power flow in power systems. Based on this
weak coupling the real and reactive set of equations are decoupled and the problem is split into two sub-
problems in FDLF. In this method, the jacobian matrices are made constant and need not be recomputed during
the iterative process. It is developed with the following assumptions.

e the voltage magnitudes, V , are close to 1 p.u
e the phase angles, o, are not large in magnitude
* r«X.



This algorithm is fast and requires very less computer memory. This algorithm is predominantly used in the
energy management systems, even for real time applications. However, it diverges, if any of the assumptions

becomes invalid.

Classification of Buses

Bus Specified Computed

Slack Vv, § P.Q
Generator P,V Q, 0

(PV)

Load P, Q V, d

(PQ)

Example System with Known and Unknown variables

Slack| G t
ac enerator Load Buses
bus Buses
V, V5|V, V
Specified V10 | V2| V5| Va| Vs
I:)2 P3 P4 P5 I:)6 I:)7 P8 P9 PlO P11 P12 P13
Unknown
12 82 83 84 85 86 87 88 89 810 811 812 813
Specified Qs | Q7| Qg | Qg | Qio| Qi1 | Qzz | Qa3
Unknown
8 V6 V7 V8 V9 VlO V11 V12 V13
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Flow Chart of NR Method
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Flow Chart of FDLF Method

( START \\'
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UNIT-IV SHORT CIRCUIT STUDIES
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Zero Sequence Equivalent Circuits of Three-Phase Transformers

SYMBOLS CONNECTION DIAGRAMS ZERQ SEQUENCE EQUIVALENT CIRCUITS

P Q z,
1°_.3§_Q

| 4 P Q
Y
g Reference bus

— T N—e —_—
St
!

Reference bus

Q, 7
| e N {
l AN {
e’ :
! Reference bus
P Q, Z
P an—  —3

L
T

e . e — — e —

Reference bus

P Zg Q

Reference bus
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FAULT IMPEDANCE AND ADMITTANCE MATRICES

Three-phase components Symmetrical components
Type of fault
z;.l.- F;-I-l z%l.! Y}.l.l
ir + 1, 2, ||.u+2yr Yo — yr 'ya“w zr+3z, | 0 0 ve | O 0
1
2, r + 1y 5, ilw = lrr vo + 2yr | ¥o = ¥r 0 zr | O 0 yr | O
£y | 5 2+ 1, Wo=¥r |Vo=Vyr ’h'!‘ 2y 0 0 zr 0 0 vr
b : where -
where ya 2 ¥ 31, Ye 2y + 3z,
r |
2| =1 | =1 | = 0 0 0 0 0
Not defined !E =1 2| =1 0 zp | O yr| 0 1 0
=1] =1 2 0 0 zr 0 0 1
€
L]
I zr | 0 0 yre | O 0 1 1 1
[l = vr
0 ‘ w |0 o |elo Not defined AR RER
o [0 | = R YRR
e-to—ground I |
[ 0 0 0 ——
« | 0 I 0 2 —zp —2r
I | 0 zr + 2, =1y | S T ——
0 i Ir + 8 I, l,.r + 2zp2, l} + 2upz, Not defined m i =z ! 2zp + 32, k.. (zr +32,)
| 0 | 1 i+ B, 0 -2, ir + 1, —zr i—(z,- +32,)| Q2p + 32,
Line-to-line-to- & 4 222, | 23 + 2242, e -
ground
a b € T "
* 0 o 0 o 0 ’ 0 l
£y F . vr 1 i we oo
Not defined 5 0 1 =1 Not defined =] 0 1| =1
———
0| =1 1 1‘ 0 1 =1 ’ 1 }
Line-to=line :
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